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Abstract— Vehicular ad hoc networks using WLAN technology
have recently received considerable attention. We present a
position-based routing scheme called Connectivity-Aware Rout-
ing (CAR) designed specifically for inter-vehicle communication
in a city and/or highway environment. A distinguishing property
of CAR is the ability to not only locate positions of destinations
but also to find connected paths between source and destination
pairs. These paths are auto-adjusted on the fly, without a new
discovery process. “Guards” help to track the current position
of a destination, even if it traveled a substantial distance from its
initially known location. For the evaluation of the CAR protocol
we use realistic mobility traces obtained from a microscopic
vehicular traffic simulator that is based on a model of driver
behavior and the real road maps of Switzerland.

I. INTRODUCTION

Ad hoc (or self-organizing) networks operate without a
predefined fixed (managed) infrastructure. Vehicular ad hoc
networks (VANETs) using 802.11-based WLAN technology
have recently received considerable attention in many projects
(e.g., VIC’S [1], CarTALK 2000 [2], NOW (Network-on-
Wheels)) and industry groups (e.g., the Car2Car Communi-
cation Consortium [4]).

Among the ad hoc routing protocols, position-based routing
is known to be scalable with respect to the size of the network
and is therefore a good candidate for inter-vehicle commu-
nication. However, many geographic routing (GR) protocols
are designed assuming a random and uniform distribution
of nodes, which move freely in an area that is larger (or
much larger) than the nodes’ average coverage range. Previous
studies of ad hoc network protocols show that performance
depends heavily on the chosen mobility model [5]–[8] and that
a uniform distribution of nodes in a rectangular area is clearly
favorable for graph traversal and shortest path algorithms [5],
[9], [10]. When the distribution of nodes is more complex
and less random (e.g., cars on city roads), then many of the
suggested GR protocols experience performance problems.

For our study of VANETs we use realistic mobility traces
[5]. These traces are obtained from a multi-agent microscopic
traffic simulator that is capable to simulate public and private
traffic over real regional road maps of Switzerland [11], [12].
The simulator models the behavior of people living in the
area, reproducing their movement (using vehicles) within a
workday. For our mobility model we use a 24 hour detailed
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car traffic trace file in ns-2 movement format with a detailed
movement description of an area that includes the main
country highways joining the city of Zurich (Switzerland). The
advantages of using realistic vehicular traces are elaborated
in [5], [13], [14] and are not a topic of this paper.

Several GR protocols are proposed or adopted specifically
for VANETs, e.g., [10], [15], [16]. However, the vast majority
of these protocols have never been evaluated with a realistic
location service. Commonly an idealized mechanism is used
such that for every originated data packet the true position
of the destination is known, e.g. based on the simulator’s
global view. This kind of protocol evaluation may easily hide
the effect of inconsistent destination positions on protocol
performance. The overhead of a realistic location service also
remains unknown.

Another problem is that, to the best of our knowledge, all
of the GR protocols focus on geographically existing paths
but do not take into account if a path between source and
destination is populated.

We present a novel position-based routing scheme called
Connectivity-Aware Routing (CAR) designed specifically for
inter-vehicle communication in a city and/or highway envi-
ronment. CAR integrates locating destinations with finding
connected paths between source and destination. Once a path
is found, it is auto-adjusted on the fly to account for changes,
without another discovery process. “Guards” help to track the
current position of a destination, even if it travels a substantial
distance from its initially known location.

This paper is organized now as follows. We talk about
the motivation for this work in Section II. In Section III we
introduce the Connectivity-Aware Routing (CAR) protocol.
The common simulation setup and the evaluation results of
CAR are given in Section IV. Related work is considered in
Section V. Section VI concludes the paper.

II. MOTIVATION

Many applications for VANETs have been suggested [4] that
require multi-hop communication, so a routing protocol should
handle fast changes of the ad hoc network topology. A study
of VANETs for realistic scenarios shows that AODV [17] (not
a GR protocol) combined with Preferred Group Broadcasting
(PGB), an optimization of broadcasting, provides better results
than GPSR, a GR protocol, GPSR [18] even when GPSR is
improved with Advanced Greedy Forwarding (AGF) [5]. At



Fig. 1. Find path examples.

the same time, when non-GR protocols are compared to geo-
graphic ones in random rectangular networks with uniformly
distributed nodes, then typically GR protocols demonstrate
better performance and scalability [5], [9], [18] since GR
protocols are not strictly bound to the choice of a node
on each hop and make forwarding decisions based on the
current neighborhood situation of a forwarding node. However,
irregular patterns of road networks often prevent GR protocols
from finding existing and populated paths between source and
destination pairs, whereas the broadcast-based route discovery
of AODV normally reaches the destination, if any connected
path exists.

Consider the road situation on Figure 1. wants to send a
packet to (assume already obtained ’s coordinates from
a location service). A routing protocol based on the graph faces
traversal (e.g., GPSR) sends the packet from to , where
a local maximum is detected (no neighbor of is closer to

than itself). Thus perimeter mode is activated, and the
packet travels to , where another local maximum is detected.
The same way the road paths starting with and are tried,
before the packet is eventually sent over a populated path to .
Obviously, this routing strategy is unattractive for a vehicular
scenario.

Some GR protocols take into account the existing road
network (feedback from a navigation system is assumed) and
compute paths by using Dijkstra’s shortest path algorithm [9],
[15]. However, these GR protocols are not always able to find
populated paths between and . Such a protocol may tell

that there is the shortest path to (Figure 1). However,
after traveling to , the protocol learns that path number is
currently disconnected. Another shortest path found from
is , but after traveling to , path number also appears to
be unpopulated. Finally, path number leads the packet from

to . Since no notifications of the disconnected paths are
generated by the nodes, continues to send packets over path
number , and the whole routing loop is repeated.

These observations motivated a connectivity-aware GR pro-
tocol that uses the advantages yet does not share the disad-
vantages described above of these protocols.

III. CONNECTIVITY-AWARE ROUTING (CAR)

The CAR protocol consists of four main parts: (1) destina-
tion location and path discovery; (2) data packet forwarding
along the found path; (3) path maintenance with the help of
guards; and (4) error recovery.

Fig. 2. Influence of the neighbor table accuracy. The accuracy of node 1
neighbor table is far less important for the communication between nodes
and than those of nodes 2, 3, and 4.

A. Neighbor tables and adaptive beaconing

In CAR all nodes include in the periodic HELLO beacons
information about their moving directions and speeds – veloc-
ity vectors (introduced in AGF [5]) .

When a node receives a HELLO beacon, it adds the sender
of that beacon in the node’s neighbor table, estimates its own
and the neighbor’s velocity vectors, and sets the expiration
time for the entry in the neighbor table. The entry expires
after a time when estimated positions of the current node and
the neighbor become separated by more than 80% (config-
urable) of the average coverage range, or after two HELLO
intervals (whatever is smaller). A new HELLO beacon from
the neighbor updates the entry.

The HELLO beaconing with a fixed period (with and even
without jitter) may have several drawbacks such as: waisted
bandwidth, delaying of data packet, increased network con-
gestion. At the same time, if the velocity vector information
helps to estimate the availability of a node, the beaconing rate
can be made adaptive.

Consider the situation in Figure 2. Node has several
neighbors nearby and Node has only a few neighbors (i.e.,
only and ). At the same time Nodes and cannot
communicate directly. If now wants to send a message to

, the accuracy of the nodes’ neighbor tables around Node
is far less important than the accuracy of the tables around

Node . On the path segment between Nodes 1 and 2, almost
any intermediate node can be chosen to relay packets. At the
same time, if Node has no (or false) information about Node
, then communication between and will be impossible.
Thus, the CAR protocol uses an adaptive beaconing mech-

anism where the beaconing interval is changed according to
the number of the registered nearby neighbors. The fewer
neighbors there are, the more frequent is a node’s HELLO
beaconing. The basic beaconing interval of 0.5 s is multiplied
by a weight proportional to the number of registered neighbors.
Therefore Node 3 in Figure 2 beacons more frequently than
Nodes 2 and 4 and much more frequently than Node 1. In
other words, the beaconing mechanism of the CAR protocol
adapts to the changing traffic conditions so that the beaconing
rate per km of road stays more or less constant, no matter
how many nodes are located on each of the road segments.
At the same time, the beaconing intervals of the data traffic
destination nodes stay constant to continuously indicate their
presence.

We assume that nodes know their locations with the help of GPS or
another positioning system.



This technique effectively reduces the beaconing overhead
especially in densely populated areas, and at the same time it
does not reduce the efficiency of routing.

As with DSR and GPSR, the CAR protocol disables MAC
address filtering on the IEEE 802.11 hardware and treats
overhead data packets as implicit beacons, to reduce the rate
at which HELLO beacons must be sent. Every node that
participates in data traffic appends the regular information for
HELLO beacons (a node’s position and velocity vector) to the
data packets. When a node forwards a data packet, it resets
the timer for transmitting the next beacon, since data packets
carry beacon-equivalent reports.

A node may choose to use this procedure with every for-
warded data packet when the node’s rate of sending/forwarding
of data packets is roughly the same as the node’s beaconing
rate. Otherwise, if the data packet sending rate is higher, the
node adds HELLO beacon information only to some data
packets, to keep the implicit beaconing rate close to the 1-
2 messages/s, so that the nodes’ neighbor tables are maximally
current in regions with data traffic load.

B. Guards

To capture key components of a path, we introduce the
concept of a guard. There are two types of guards: standing
guards and traveling guards. A standing guard (or guard for
short) represents temporary state information that is tied to a
geographical area, rather than to a specific node. A guard is
kept alive by the nodes located in the area. A guard exists
as an entry in the periodic HELLO beacon of a node. This
entry contains an id, a time-to-live (TTL) counter, a guarded
position and radius, and some information that is naturally
communicated to the neighbors by the nodes’ usual periodic
HELLO messaging. A node with a guard can filter or redirect
packets or adds information to a packet that will eventually
deliver this information to the packet’s destination.

The id of the guard is generated by the node that activates
the guard and consists of the IP of the node and the node’s
guard counter (incremented every time a node activates a
guard). The age of the guard is a TTL value in ms and is
initially set by the activating node. A node that receives a
guard adds it to the Guards-Table and retransmits it with its
own beacon when the time comes to send another beacon
signal. The age of the guard is decremented every time a node
retransmits it with a HELLO beacon. Once TTL reaches zero,
the guard is removed from the node’s HELLO beacon. Only
nodes within the specified radius around the guarded position
are allowed to add a guard into their HELLO beacons; these
nodes will be denoted as guarding nodes.

Nodes that receive a guard but are not within the guarded
radius from the guarded position follow the same procedure
as guarding nodes, except that the information from the guard
is not added to HELLO beacons.

A traveling guard contains also a velocity vector, in addition
to the guarded position and radius. Each node that receives a
traveling guard records the time when the guard was received
(or last sent). As it is time for the next HELLO beacon, the

node computes the new guarded position based on the old
guarded position, the velocity vector of the guard, and the
time passed since this guard was received. Traveling guards
allow the information carried by the guard to travel with a
certain speed along the road. The age counter of the traveling
guard is decreased with every retransmission.

A node may contain several guards with different tasks
activated by different nodes. Once the task is fulfilled, the
guard can be removed even before it expires. Then the node
that activated the removal procedure adds in its HELLO
beacon the id of the guard to be removed. All other guarding
nodes retransmit this information once with their HELLO
messages (before the guard expires). If the guarding node
is actively participating in data packet forwarding, then in
addition to the usual HELLO packet, any guards are appended
to the data packets.

C. Destination location discovery

To find a destination and a path to it, CAR uses PGB in data
dissemination mode. PGB optimizes broadcasts specifically for
VANETs, it reduces control messages overhead by eliminating
redundant transmissions.

In this mode, a node (after forwarding the broadcast
packet) starts listening if the packet is rebroadcasted further.
If no further rebroadcasts happen (no next hop neighbors are
currently present), repeats the broadcast after waiting for a
set timeout. This process is repeated until a next-hop neighbor
appears and rebroadcasts the packet.

1) Adaptation of PGB to CAR: A source that requires
a path to a destination initiates a PGB path discovery
(PD) and records its own velocity vector into the header of
a broadcast packet. To avoid routing loops, a “PD id” is also
added. The “PD id” is generated the same way as the id of
a guard. Each node that receives a PD broadcast adds its id
into the Received-Path-Discoveries-Table. The PD packet is
not forwarded if the node received it a second time; the entry
expires after 60 s.

Each node forwarding a PGB path discovery request
rewrites the “Previous forwarder coordinates/velocity vector”
fields of the packet by its own data. Also, the information
about the packet travel time is added into the field “Travel
time” of the packet. Every node forwarding a broadcast packet
adds its own processing time into the field.

To estimate the connectivity on the traveled path, each for-
warder changes three other packet fields: “Number of hops”,
“Average number of neighbors”, and “Minimum number of
neighbors” .

Two velocity vectors are parallel if the smallest angle
between the vectors is less than (configurable, currently
equal to 18 ). Otherwise the velocity vectors are non-parallel.
Nodes that have neighbors with non-parallel velocity vectors

In addition other parameters such as available bandwidth, packet queue
status, interference or congestion level, nodes average speeds, neighborhood
changes rate, error rate can be recorded



identify themselves as being near a crossing or road curve and
can serve as relays .

A node adds an anchor to a broadcast packet if the direction
of the node’s velocity vector is different (non-parallel) from the
“Previous forwarder velocity vector” field. An anchor contains
two anchor points – the coordinates of the current node and the
coordinates of the previous forwarder as well as their velocity
vectors.

As the broadcast passes a new crossing, another anchor
is added to the packet (a road curve might be identified as
crossing; however such a false-positive identification does not
influence the accuracy of the protocol).

In the end, when the broadcast finally reaches its destination,
the destination node has the whole path to the source node
recorded as a set of intermediate anchor points.

The destination node, after receiving the first PD request,
analyzes the available information collected by the request on
its path. A decision is taken to issue a route reply immediately
or to wait some more time for additional PD requests (that
possibly took a different path) to arrive. When several PD
requests are received, the destination chooses the path that
provides better connectivity and lower delays.

Eventually a route reply is sent from the destination back
to the source. A route reply is a unicast packet that contains
the destination’s coordinates and velocity vector, together with
the information collected by the route request on its way to
destination. AGF is used to forward the route reply back to
the source via the recorded anchor points. When the source
receives the route reply, it records the path to the destination
and starts transmitting data. Data packets are forwarded in a
greedy manner toward the destination through the set of anchor
points using the same AGF algorithm. The next subsection
describes this forwarding in more detail.

The advantages of this approach to discover a destination’s
location are (1) it finds the paths that are not only geographi-
cally possible but exist in reality; (2) it takes the connectivity
into account; (3) there is no need for expensive trial-and-error
route tests based on data packet transmissions. (3) only source-
destination pairs keep anchored paths to each other. Basically,
CAR’s discovery algorithm finds the paths in a similar way
as Dijkstra’s algorithm would do when the connectivity and
the packet travel time on each road segment were known in
advance to the source and were then used to estimate the link
cost.

D. Greedy forwarding over the anchored path

The CAR protocol extends AGF to work with anchor points.
AGF assumes that both the source and the destination inform
each other about their velocity vectors. Instead of forwarding
a data packet to a neighbor that is geographically closer to
the destination, a neighbor closest to the next anchor point
is chosen. To avoid multiple attempts to gradually get closer
to the next anchor point, each forwarding node checks if its
position and the position of the next anchor point is separated

Another way to identify crossings is to compute correlation coefficients
based on coordinates of the neighboring nodes [16].

by less than half the node’s coverage range. If so, then this
anchor point is marked and the next one is chosen as target.
The process continues until the packet reaches its destination.

E. Path maintenance

Any path may become invalid. Let us first assume that path
segments between anchor points stay connected. Anchor points
are bound to crossings, thus the only possibility for a route
to break is a changed positions of the source and destination
(the end point nodes).

If an end point node moves a substantial distance from
its known position (or takes a turn at a crossing), previous
protocols fail and must start a new location discovery. Here
we present how guards help to adapt to such a situation without
loosing data packets and avoid a new location discovery phase.

1) Guards in path maintenance: If an end point node
changes its direction, then the node activates a standing guard.
The guard contains the old and the new velocity vectors of
this node. Whenever a guarding node receives a data packet
addressed to the node that activated the guard, the guarding
nodes adds the guarded location as an anchor point to the
header, updates the estimated position of the destination, and
retransmits the packet.

However, if – before changing direction – an end point node
was moving against the direction of communication, and

the packet travel time (contained in the data packet header)
between the end point nodes is larger than the time needed
by to cover a distance equal to the node’s average coverage
range, then a traveling guard is activated. This guard travels in
the node’s old direction with the node’s old speed, rerouting
data packets that arrive at the old estimated position of the
destination.

Right after activating a guard the node sends a notification
packet: the source adds notifications to data packets, the des-
tination sends a special packet . While a notification is on the
way, all data packets are rerouted with the help of the guard.
Upon receiving the notification, the counterpart recomputes
the set of anchor points for future communication. A similar
notification is generated if an end point node passes an anchor
point or crosses a straight line between two subsequent anchor
points.

If an end point node notices that due to speed changes its
estimated position known to the communication counterpart
and its true position become separated by more than 60% (con-
figurable) of the average coverage range, the node broadcasts
a traveling guard, letting the guard travel with the old speed
of the node. The guard contains the information about the new
node’s position and velocity vector.

By default the lifetime of a guard for path maintenance
is equal to three times the packet travel time between the
end point nodes. The short life time (few seconds) removes
the possible scalability problem, as the maximum number of
guards coexisting in the same area is limited by the number of
vehicles that take a turn on the same crossing within the life

If the protocol includes ACK packets, these may be used to carry such
notifications.



time of a guard (considering the worst case scenario all turning
vehicles are end point nodes). In case of guards activated due
to speed changes, the maximum number of guards is limited
by the number of neighbors (moving in the same direction)
that changed their speed almost simultaneously.

If the line of sight distance is decreasing and the path
length is increasing, then the source node may trigger a path
optimization request if the line of sight does not cross the path
and the path length is at least two times larger than the line
of sight distance. The scope of this request is limited to the
current path length.

Guards help adjusting the connected path without em-
ploying new path discoveries even if the end point nodes
change their moving speeds and/or directions. However, in
case any routing errors occur (e.g., path disconnections) the
CAR protocol possesses a recovery mechanism described in
the next subsection.

F. Routing error recovery

CAR’s destination location and path selection mechanism
chooses connected paths and avoids routing to a dead-end.
However, routing errors may still occur, and CAR should be
able to recover from such a situation.

There are two possibilities for routing error to occur. First,
the AGF algorithm may fail to forward a packet between two
anchor points due to: (a) a temporary gap between vehicles
(or raised interference level), such gaps may appear and
disappear with time at any place on a road; or (b) long-term
disconnections due to a suddenly closed road or an unusually
big gap in the vehicular traffic. When we use the term gap,
we refer always to a gap between the cars on a road that
makes communication impossible – the gap is larger than the
coverage range.

Second, a packet may reach the estimated destination po-
sition after passing the last anchor point but fails to find the
destination there. The reason for that event could be that the
destination changed direction but could not activate a guard
due to a lack of neighbors within communication range; or the
guard was activated but later could not be retransmitted due
to the same problem.

The next subsections discuss how the CAR protocol handles
the these routing errors.

1) Timeout algorithm with active waiting cycle: One ap-
proach to tackle temporary gaps (or a raised interference level)
is the use of timeout with packet buffering and an active
waiting cycle. The forwarding node suspends the packet and
periodically checks if the next hop neighbor has appeared. A
long-term disconnection recovery algorithm should be invoked
when a simple timeout approach failed.

Whenever a node detects a gap, the node first broadcasts
a non-propagating next-hop request. This request serves two
goals: (1) it tells other nodes that a disconnection is detected
and that the current node started buffering packets (became
a temporary destination); (2) it tries to detect a next hop
node. The request contains the coordinates of the sending
node and of the next anchor point (or of the destination). A

node that receives this request and identifies itself to be in
between the two coordinates replies with a HELLO beacon. If
no answer is received, we assume that a node encountered a
temporary disconnection due to the minimum possible gap in
the vehicular traffic. Since small gaps occur more often than
large ones, this assumption is reasonable. Let be the node’s
average coverage range and its current speed. If feedback
from the navigation system is available, the speed limit
on the current road segment can be obtained. If there is no
navigation system feedback, we still can estimate the possible
speed limit for the current segment, knowing speed limits for
city, national, and highway roads and taking a speed limit that
is higher than the current node speed.

Figure 3 shows the pseudo-code for the timeout algorithm.
To prevent several simultaneous answers from more than one
new neighbor, jitter is introduced before replying back.

The idea behind the choice of the wait times is the follow-
ing: first, we do not want too frequent probing so that a node
does not jam the network neighborhood; second, we do not
want to miss the opportunity to send the buffered packets fur-
ther. Although there may be more sophisticated calculations of
the wait times suggested (e.g., probabilistic based on collected
statistical data), the presented timeout algorithm is simple
to implement, does not involve expensive computations, and
successfully improves protocol performance.

p - incoming packet
/* local maximum detected (e.g., no neighbors

* closer to the next anchor point) */
buffer p
probe for undetected next hop neighbor
if found new next hop neighbor X

de-buffer p; send p to X; return
endif
/* get speed limit V for the current road segment */
v = min (v0, V);
/* assume gap is minimal ˜ R */
/* time needed to halve the minimal gap */
wait( R/2 / (2*v) )
/* active waiting cycle */
for i=0; i < MAX_RETRIES; i++

probe for new next hop neighbors (RREQ)
if answer received from X

de-buffer p; send p to X; return
endif
wait R/4 / (2*v)

endfor
walk-around();

Fig. 3. Timeout algorithm

2) Walk-around error recovery: If the AGF algorithm fails
to find the destination at its estimated position (case 1), or the
timeout algorithm could not find the next hop host (case 2), the
node that detected the problem informs the source about the
error and starts a local destination location discovery process.
In case 1 the scope of this discovery is limited to half the
number of anchor points in the old source-destination path.
The broadcast is allowed to travel no more than one half of
the old path length. In case 2 the scope is limited to the number
of anchor points in the old path to the destination (from the
current node) plus 50%. The same applies to the path length.

At the same time, the node with the help of a guard an-
nounces itself as a buffering node (or temporary destination).



It receives and stores all data packets that were on the way,
before the error notification arrived to the source node and it
suspended sending new data packets on the route.

If the location discovery is unsuccessful, the negative result
is sent to the source node and it starts a new path discovery
from its current position. The packets temporarily buffered by
the node can be either dropped or sent back to the source.

On the other hand, if the location discovery is successful,
the newly discovered path is communicated to the source node.
The path contains the concatenation of the anchor points on
the way to the node that detected the problem and the anchor
points in the new path from that node. When the source
receives this information, it analyzes the new path and if it
happens to be that the returned new position of the destination
is now closer to the source (closer than to the node that
detected the problem), it may decide to launch a new path
discovery, especially if the previous path was crossing the line
of sight between the source and the destination node and the
new one does not.

If navigation system feedback is available, it can be used to
optimize the process. While waiting for the new path discovery
to complete, the last found route is used to forward data
packets.

IV. EVALUATION OF THE CAR PROTOCOL

A. Simulation setup

In our experiments we use version 2.28 of the ns-2 simulator
with the probabilistic Shadowing model. Unlike the Free Space
and the Two-ray Ground Reflection models, the Shadowing
model does not predict the receiving power as a deterministic
function of distance. Instead, the Shadowing model uses a
statistical approach to calculate the receiving power and takes
into account multi-path propagation effects.

The maximum possible communication range in Shadowing
Model is 400 meters for the city scenarios and 500 meters for
the highway; (path loss exponent), (standard
deviation of the Gaussian distributed random variable with
zero mean) for the highway scenarios, and ,
for the city scenarios; we model the 2.4 GHz band with 2
Mbps data rate (see [5] for a discussion).

The evaluated protocols are: GPSR, GPSR+AGF [5], and
the CAR protocol without and with enabled walk-around error
recovery (CAR+WA).

In this paper we present results for three different densities
of nodes (low – less than 15 vehicles per km of road, medium
– 30-40 vehicles/km, high – more than 50 vehicles/km) in
the following movement scenarios: highway (averaged over
3 different highway areas, each 10 sub-scenarios for every
density of vehicles) and city (averaged over 3 different city
areas, each 10 sub-scenarios for every density of vehicles) [5].
These aggregate names (highway and city) will be used further
in the paper to refer to the whole subset of corresponding
scenarios. 20 CBR traffic sources with a sending rate of 4
packets/s are considered. Sources stop generating data packets
50 seconds before the simulation end. Source/sink nodes stay

inside the simulated area (do not leave the area and do not
park) for the duration of the simulations (300 seconds).

B. Metrics

We present the following metrics for comparing the perfor-
mance of the evaluated protocols.

Packet delivery ratio (PDR) – the fraction of the data
packets originated by an application that each routing
protocol delivers.
Average delay of a data packet – the average difference
between the time a data packet is originated by an
application and the time this packet is received at its
destination.
Routing overhead – the total absolute number of routing
packets transmitted during the simulation. Again each
hop in a multi-hop route is counted separately (for both
metrics).

C. Packet Delivery Ratio and Delay

Figure 4 shows packet delivery ratio for city and highway
scenarios with different densities of vehicles. For all traffic
densities, GPSR performs very poorly in the city scenario,
with 5-7% of data packets delivered. Also, the advanced
greedy forwarding algorithm (GPSR+AGF) shows moderate
performance (up to only 38% of data packets delivered),
although performance is noticeably higher than for standard
GPSR. Note that GPSR and GPSR+AGF use an idealized
location service in the simulation: source nodes obtain the true
location of destinations each time a data packet is originated.
Despite the additional overhead to discover the real paths
and to obtain destination coordinates, CAR and CAR+WA
demonstrate much better results than GPSR+AGF . The high-
way scenarios are geographically less sophisticated than the
city scenarios, thus all studied protocols show better PDR in
highway areas. Again, CAR and CAR+WA outperform GPSR
and GPSR+AGF, despite the need to obtain and maintain paths
between source-destination pairs.

In terms of the average data packet delays (Figure 5),
the original GPSR and the GPSR+AGF are always worse
than CAR and CAR+WA. For CAR, the route discovery
process precedes every first data transmission to an unknown
destination, this step adds to the delay of the first data packets.
However, the average delay of the data packet for CAR and
CAR+WA is much lower than for GPSR and GPSR+AGF.
This result is a consequence of CAR’s use of real connected
paths between source and destination pairs, whereas GPSR
and GPSR+AGF often fail due to local maximum resolution
encountered by the perimeter mode. CAR easily tolerates
short-term disconnections due to gaps or a temporary high
interference level (e.g., frequent MAC collisions).

In the scenarios with low density of nodes the network often
becomes disconnected, leading to the low PDR and high delays
of all tested protocols. However we can see that the CAR

The performance problems of GPSR and GPSR+AGF are discussed in [5],
here we just use the performance results of both protocols for assessing the
effectiveness of CAR.
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Fig. 4. Packet delivery ratio.

(a) City

(b) Highway

Fig. 5. Average delay of a data packet.

(a) City

(b) Highway

Fig. 6. Routing overhead in packets.

timeout strategy, which forces the nodes that detect a next-
hop disconnection to wait for some period before dropping a
packet, helps – PDR of CAR is more than two times higher
than PDR of GPSR+AGF in low density scenarios.

D. Routing Overhead

The routing overhead of GPSR consists mainly of the
periodic beaconing that the nodes must perform. In CAR, in
addition to beaconing, nodes may initiate path discoveries and
may activate guards. GPSR can be also configured to pro-
actively probe the perimeter for the new routes and to use
this knowledge of the local topology to attempt to recover
from greedy forwarding failure by routing around voids. In
our experiments this option is switched off, since it harmed
GPSR performance a lot.

GPSR and GPSR+AGF do not differ noticeably in the
overhead they create. With AGF the nodes at the last hop
towards the destination sometimes send a non-propagating
route request in search for the destination, causing the same
overhead as a single HELLO beacon. However, in all the
simulated scenarios the number of these requests was less than
0.1% of the total number of beacons. Thus, here we present
the data for GPSR only as representative routing overhead for
both GPSR and GPSR+AGF.

Figure 6 shows the total routing protocol overhead, mea-
sured in total number of routing packets sent network-wide
during the entire simulation. For the CAR protocol, the
overhead is presented as a cumulative contribution of (1)

beaconing, (2) path discoveries, and (3) path maintenance with
the help of guards. Below we also discuss the contribution of
all kinds of routing overheads to the total protocol routing
overhead.

At all simulated traffic densities, CAR generates less routing
overhead traffic than GPSR, although no idealized lookup is
used. Even when walk around route error recovery is activated
(CAR+WA), the CAR protocol overhead stays lower than for
GPSR. The reasons for that are explained in the following
subsections.

1) Beaconing overhead: Because GPSR’s (as well as
GPSR+AGF) beacons are sent pro-actively, the level of routing
protocol traffic depends on the number of nodes in the area
(density of nodes). Thus, the beaconing overhead of GPSR
grows directly proportional to the vehicular traffic density. The
CAR protocol uses an adaptive beaconing mechanism, and
the beaconing interval depends on the node’s neighborhood.
Thus, in low traffic density scenarios, nodes beacon more
frequently than in high traffic density ones. On the other hand,
fewer nodes are involved in the low traffic density scenarios,
as a result the beaconing overhead of CAR shows smaller
dependence on the node density than the one of GPSR.

The use of adaptive beaconing allows CAR to keep the
average beaconing overhead from 1.5 to 3 times lower than
the beaconing overhead of GPSR, without harming the perfor-
mance. Moreover, when the adaptive beaconing mechanism is
applied to GPSR, this protocol drops up to 30% fewer data
packets.



2) Path discoveries overhead: Source nodes launch PGB-
based destination location discovery whenever they have data
packets to transmit. Ideally only one discovery is needed
per source/destination pair; afterwards the discovered paths
can be maintained with the help of guards and notifications
about direction changes. In fact, route optimizations and route
repairs may occur, and in our experiments on average 1.2
path discoveries are initiated in addition to the initial one.
However, one path discovery broadcast even in the worst case
causes much less routing overhead than the overhead created
by sending one HELLO beacon by each node.

In each scenario we have 20 data sources; an average CAR
node sends around 150 beacons during the simulation time.
Thus, the upper bound estimation for the overhead created
by path discoveries and optimizations is (150 + 2.2*20)/150
=+30% compared to the beaconing overhead. In reality it is
noticeably lower, since PGB eliminates redundant rebroad-
casts. Path discoveries are followed by replies, but replies
are unicast packets and do not load the whole networks as
broadcast packets may do. Only destination nodes may send
relies, thus the overhead created by replies stays in the noise
compared to the beaconing overhead.

3) Guards overhead: Guards do not add any overhead in
packets, since they are appended to the HELLO beacons of
nodes. Although this addition increases the HELLO beacon
packet by around 20 bytes, guards have a very short life time
(1-6 s) and on average are transmitted only 1-2 times by each
node. An average CAR node sends around 150 beacons and
needs to transmit only 2-3 guards during the simulation time.

V. RELATED WORK

Many GR protocols are described in the literature. Planar
graph face traversal algorithms, like perimeter routing [18]
or FACE-2 routing [19] (walking around a void) assume a
nearly perfect circular radio range of nodes, and all nodes
have identical coverage ranges. Although these algorithms are
able to deliver data to destinations in an all-time connected
network, for every data packet sent they may require the traver-
sal of almost the whole network graph to find a path. These
protocols suffer a lot from destination location inconsistency.
Also, an irregular radio may lead to routing loops during the
face traversing phase [5], [21].

Another class of GR protocols – shortest path algorithms
– takes advantage of road map knowledge. These protocols
have similar behavior with a navigation system, returning the
shortest path between source and destination [9], [15], [16].
However, there is no guarantee that the computed path is
currently populated. The protocols need to send bulky data
packets along the computed route until the local maximum
is reached. Then a new shortest path is calculated, and so
on. This process may take quite some time and may waste
network capacity. A more advanced algorithm adds weights
to roads (e.g., bigger roads with bus traffic have higher
weights than secondary roads) that may improve connectivity
on the computed path [10]. Although the probability of such
a route to be connected increases, there still can be periods

of disconnection. Also all data flows will be attracted to these
main roads, increasing there the congestion and contention
level, decreasing the throughput. At the same time side-roads,
even with currently good connectivity, may be left without
attention. Some shortest path protocols call a computationally
expensive Dijkstra algorithm for each registered neighbor be-
fore a forwarding decision is taken [15]. These may noticeably
increase the data packet delay in a real life situation, where
computation overhead is not zero.

Typically, before the data forwarding process starts, GR
protocols require the coordinates of the destination nodes to
be known. A vast majority of the suggested GR protocols
assumes destination coordinates are known any time a node
wants to send a packet [10], [15], [16], [18], [22], [23]. The
performance of these protocols is then evaluated using an
idealized zero-overhead location service. However, it remains
unclear how the real destination discovery service may in-
fluence the performance of these protocols. If an end point
node (typically a destination node for UDP traffic) moves a
substantial distance from its known position, all suggested
protocols fail and need to start a new location discovery.
However in the vast majority of publications that are based
on an idealized location service, this situation almost never
occurs, since every originated data packet is stamped with the
true position of the destination. With the send rates of 2-10
packets/s typically used in these studies, an idealized location
service must be called 2-10 times/s. It is hard to assume that
the overhead created by these queries does not influence the
protocol performance at all.

The use of anchors is not completely new. DSR [24] records
at the route discovery phase the set of intermediate nodes that
are later used in data forwarding. A-STAR [10] and GSR [9]
protocols require road map knowledge to pre-compute the
path to the destination. Then the source node includes into
each packet a route vector composed of a list of anchors
or fixed geographic points through which packets must pass.
Terminode Remote Routing is another example of the anchor-
based routing [23].

The use of timeouts is also mentioned in Spatially Aware
Routing (SAR) [15]. However the authors did not present
any details on the algorithm (e.g. how often a node tries to
resend the failed packet). In SAR, the routes are computed
by Dijkstra’s shortest path algorithm based only on road-map
graphs; no connectivity information on the computed path
is available. Thus many data packets may be sent over a
disconnected path and are forced to wait before eventually
recomputing a route.

In this paper we introduced guards – the entries in the node’s
periodic HELLO beacons that are naturally communicated to
neighbors without creating an additional overhead. In LAN-
MAR [25] for each group of nodes a landmark is elected.
The coordinates of landmarks are proactively known to all
nodes and are used to route packets globally, and then each
landmark knows how to route locally. A “FORWARDING
POINTER” in HELLO beacons is used in ELF (Efficient
Location Forwarding) [26] to redirect between home regions,



and in the Grid Location Service [27] to keep track of to which
cell the node moved to from the current cell. Since every node
needs to inform the home region or cell about its new location,
the number of these messages may grow fairly large.

VI. CONCLUDING REMARKS

In this paper we presented CAR, a new Connectivity-Aware
Routing protocol for VANETs. The CAR protocol is based
on PGB and AGF to provide a scalable low overhead routing
algorithm for inter-vehicle communication both in the city and
on the highway.

CAR is able to locate destinations without using an idealized
location service. Rather than relying solely on knowledge of
the road layout, CAR adapts to current conditions to find a
route with sufficient connectivity so as to maximize the chance
of successful delivery.

Route maintenance is organized with the help of guards, so
that route changes are corrected on the fly.

The evaluation of the CAR protocol is based on realis-
tic traces of vehicular movement in an area of 350 km x
260 km with 260’000 vehicles participating in the traffic.
The traces are obtained from a microscopic vehicle traffic
simulation on the real road maps of Switzerland, and to
increase the credibility of our study, we model irregular radio
channel behavior by using the probabilistic Shadowing signal
propagation model. The comparative evaluation of CAR with
other routing schemes shows that the CAR protocol delivers
a clear improvement in the data delivery rate and the average
data packet delays, despite the overhead that is created by
path discovery phase. Further evaluations are necessary to
extend these finding, but the preliminary results obtain are
encouraging.

CAR is presented here as a unified protocol but the key
concepts can also be incorporated into other protocols. E.g., in-
corporating CAR’s adaptive beaconing mechanism into GPSR
improves GPSR’s performance by up to 30%.

VANETs must deal with changing topologies, and a number
of issues must be addressed before VANETs can be become
a practical reality. CAR addresses one of the key issues that
must be dealt with in such an environment: by constructing a
minimal “infrastructure” in the form of guards along a path
from a source to a destination, CAR maintains enough state
to allow efficient communication between two moving nodes.
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